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The Crystal Structure of Myoglobin: Phase Determination to a Resolution of 2 A 
by the Method of Isomorphous Replacement 

BY R. E. DICKERSON,* J. C. KENDREW AND B. E. STRANDBERG t 
Medical Research Council Unit for Molecular Biology, Cavendish Laboratory, Cambridge, England 

(Received 2 September 1960 and in revised form 31 January 1961) 

The method of multiple isomorphous replacement has been used to solve the structure of the protein 
myoglobin to a resolution of 2 A. EDSAC II has been programmed to calculate the phase angles, 
and the statistical treatment of errors proposed by Blow & Crick has been used throughout, leading 
not to the most probable electron-density map but to the one with the least mean square error over 
the entire unit cell. Problems inherent in adapting the process for a digital computer are discussed, 
and examples are given of probability curves for typical phase determinations. A method of refining 
heavy-atom parameters in the course of phase determination is presented. Comparisons of the most- 
probable and least-error electron-density maps are presented in the region of the haem group, 
and it is shown that the latter map gives slightly better results. In an appendix a means of trial-and- 
error least-squares refinement of heavy-atom parameters using data from a centrosymmetric 
projection is discussed. 

1. Introduction 

Most methods of crystal-structure analysis  involve the 
use of a certain amount  of ini t ial  information about  
the structure, or the accumulat ion of knowledge in the 
course of i terat ive tr ial-and-error refinements.  Wi th  
proteins, which commonly contain thousands of atoms 
per molecule, such an approach is impract icable  and 
more direct means of a t tack must  be used. The method 
which has thus far proved successful is tha t  of mult iple  
isomorphous replacement.  I t  is with the applicat ion 
of this method to sperm-whale myoglobin and with 
some of the computat ional  problems encountered tha t  
this paper  is concerned. 

Green, Ingram & Perutz (1954) showed tha t  the 
addi t ion of only two mercury  or silver atoms to a 
haemoglobin molecule of molecular weight 68,000 
produced quite discernable changes in the diffracted 
X-ray  intensit ies from the protein crystals. This 
demonstra ted  tha t  isomorphous-replacement methods 
were practicable in proteins and hence tha t  direct 
phase determinat ion was possible. The first use of this  
method on proteins was the calculation of a centre- 
symmetr ic  projection of horse haemoglobin by  Bragg 
& Perutz (1954). Blow (1958) calculated the first 
projection involving complex structure tatters, also of 
horse haemoglobin.  In  both cases the overlap of atoms 
in projection was so extensive tha t  v i r tual ly  no infor- 
mat ion could be obta ined about  the molecule. 

The first three-dimensional  applicat ion of mult iple  
isomorphous replacement  to a non-centrosymmetr ic  
structure was carried out by  Kendrew and  co-workers 
(Kendrew et al., 1958; Bode, Dintzis, Kendrew & 
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Wyckoff,  1959). In  this work the general features of 
the myoglobin molecule were determined using the four 
hundred  reflections for which 2 sin 0 was less t han  ~/6, 
or to '6 ~ resolution'.  The recent extension to 2 A 
resolution (Kendrew et al., 1960) involved a near ly  
twenty-seven-fold increase in data  and necessitated 
abandonment  of the previous graphical  solution of 
phase angles in favour of a digital  solution carried out 
on EDSAC II. 

2. Geometr ica l  solution for phase  angles  
and treatment  of errors  

Harker  (1956) proposed a graphical  method of deter- 
mining phases by  isomorphous replacement  in non- 
centrosymmetr ic  structures. He assumes tha t  there are 
avai lable  a parent, compound and a series of at  least 
two derivatives,  each differing from the parent  by 
the addit ion or subst i tut ion of a heavy  atom or group. 
The parent  and derivatives are required to crystallize 
i somorphous ly - - tha t  is, the heavy  group cannot be 
so large tha t  it appreciably perturbs the crystalliza- 
t ion of the parent.  In  addi t ion it is assumed that ,  
by means which are summarized elsewhere (Dickerson, 
Kendrew & Strandberg,  1960), the coordinates of the 
atom or atoms of the heavy groups have been found, 
so tha t  both magni tudes  and phases of the scattering 
contr ibution of the heavy  groups can be calculated. 
Scattering contributions from individual  atoms are 
represented as vectors on the complex plane, and 
structure factors of molecules are obtained by vector 
addit ion of the individual  atomic scattering contribu- 
tions. 

The following definitions will be needed: 

F, f~, Fj = vector scattering ampli tudes  for the parent  
compound, the heavy atom group j ,  and the 
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derivative made up of parent plus heavy- 
atom group, respectively; 

F,  f~, F1 --- magnitudes of the above vectors; 
99, a~,/~ = phase angles of the above vectors. 

Hence in complex-vector notation: 

F=Fexpi99 ,  fi=fjexpio¢~, F~=F+f~=F~expifl~. (1) 

Harker assumes tha t  F and all the Fj 's  (magnitudes) 
are known from intensity measurements, and tha t  all 
the fi 's and cq's are calculable. With perfect iso- 
morphism and no experimental errors, F, ft and F~ 
will form a closed triangle in the complex plane. 
If - f j  is plotted from the origin and if two circles are 
drawn, one of radius F centred at  the origin and one 
of radius Fj  centred at the head of vector -f~, then 
the two intersections of the circles (A and B, Fig. 1) 
will determine the two possible orientations of F which 
satisfy the vector equation (1). A second heavy-atom 
derivative is needed to resolve the ambiguity and 
determine the phase uniquely, as shown in Fig. 1. 

+i 

Oerh'ative 1 

- f 2  

I 
I 

Fig. 1. Phase  circle d iagram of pa ren t  compound  and  two 
derivatives.  Vector  equa t ion  Fj----F q-fj satisfied for deriva- 
t ive 1 a t  points  A and  B;  for der iva t ive  2 a t  B and  C. 
B is hence the  correct  phase angle. For  general  phase angle 99, 
lack of closure of vec tor  tr iangles for der ivat ives  1 and  2 
is Q and eg. respectively.  

These ideal conditions are never met in practice. 
Imperfect isomorphism and experimental errors 
prevent a perfect intersection of the three circles of 
Fig. 1, and more derivatives are needed to increase 
the accuracy of the phase determination. Blow & 
Crick have treated the question of errors (Blow, i958; 
Blow & Crick, 1959) and have shown that  all the 
errors may be treated as residing in the measurement 

of F~ as shown in Fig. 1, the 'lack of closure' error 
for a particular phase angle 99 being e~(99). Assuming 
a Gaussian distribution of errors, the probabili ty tha t  
a phase angle 99 is correct is related to the lack of 
closure of the phase triangle for this angle, and is 
given by:  

PI (99) = exp - ej 2 (99)/2Ej 2. (2) 

This lack-of-closure error ej for heavy atom compound 
j is given by:  

e~2 (99) = (F~-Dj)  2 , (3) 

where Dj(99) is the third side of the phase triangle 
formed by the - f l  and F vectors, and is given by:  

Dj2(99)=F2+fi2+2Ffj cos (99-cq) .  (4) 

The root-mean-square error in the j t h  compound, Ej, 
may be found from a centrosymmetric projection 
where F, fj, and Fj must be collinear: 

Ej2=<(IF--Fjl- f j)2>=<(zJFo-AFc)2>. (5) 

This implicitly assumes that  the error Ej is the same 
for acentric and centric reflections. Ej, being derived 
from a comparison of a heavy-atom derivative with 
the parent compound, includes all experimental errors, 
errors from imperfect isomorphism and errors in loca- 
tion and characterization of the heavy group. When 
several heavy-atom derivatives are used simultane- 
ously the total  probabili ty of a given phase angle 99i 
is proportional to the product of the individual 
probabilities : 

P~ = P(¢~) = H P~(99i) = exp - . S  ej2(99~)/2Ej 2. (6) 

I t  would seem reasonable to take as the phase angle 
the most probable angle 99M, the angle for which 
.~ e¢2/2E~ ~ is a minimum. However, Blow & Crick have 
] 

shown tha t  the 'best '  Fourier synthesis, or tha t  one 
for which the point-by-point sum of squares of the 
difference between the real structure and the computed 
Fourier synthesis is least, is that  synthesis obtained 
by using the structure amplitude and phase of the 
centre of gravity of the probability distribution, plotted 
as a line density around the parent-compound phase 
circle. Thus in Fig. 2, Pi  is plotted around the phase 
circle and the centre of gravity of the resulting line- 
probability density is at the end of vector F m ,  with 
polar coordinates (mF, 99B). (For clarity the diagram 
has been presented as scaled down by a factor of 1/F 
to unit radius, and the line density has been represented 
by radial distance from the phase circle.) If the prob- 
abili ty distribution is sharp then vector m will fall 
very near to the unit circle, but  if the probabili ty is 
nearly uniform around the circle, m will be nearly of 
zero length. The magnitude of the vector m is hence 
a measure of the reliability of the phase determination, 
and functions as a weighting factor on the observed 
structure-factor magnitudes. (It will be shown later 
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Fig. 2. Uni t - rad ius  phase circle wi th  line probabi l i ty  dens i ty  
P(e) represented radia l ly  ou tward  f rom phase circle as base 
line. Vector In  extends  f rom origin to centre of gravi ty ,  C, 
of line dens i ty  P(~) t aken  a round entire circle. Polar  co- 
ordinates  of C are (m, 9B). r~ is general un i t  vector  asso- 
ciated wi th  phase angle 9t, and  vector  s t ruc ture  factor  for 
this  phase angle is ~ r i .  rm is un i t  vector  to point  of max-  
i m u m  probabi l i ty ,  wi th  associated most  probable phase 9M. 
Vector s~ is defined as shown. 

t ha t  m is the mean  value of the cosine of the error 
in phase angle for the reflection in question.) A Fourier  
synthesis  using m F  and ~VB instead of the usual F and 
99M is 'best '  in the sense tha t  i t  takes into account the 
statist ical  probabi l i ty  tha t  some phase angle other than  
the most probable angle is the true one. 

3. A d a p t a t i o n  of the  cen t ro id  m e t h o d  for 
digital  c o m p u t e r  

For  the 6 J~ Fourier  synthesis of myoglobin,  phase 
circles for the 300 acentric reflections were plotted 
graphically using five heavy-atom derivatives, and the 
phase angles were estimated visually (Bode et al., 
1959). For the 176 reflecti0n~ of the n0n-centr0.  
symmetr ic  projection of horse haemoglobin (Blow, 
1958) the centroid was found by  approximat ing  the 
probabi l i ty  funct ion by  one or two Gaussian peaks 
and taking the centroid of this simplified system. For 
the 2 /~ Fourier  synthesis of myoglobin,  phases were 
required for near ly  9,000 acentric reflections as well 
as the centric hO1 reflections, using four heavy-a tom 
derivatives.  The use of a digital  computer  permit ted  
a more exact  t r ea tment  of probabilit ies,  and  the meth-  
ods employed should be of general applicabil i ty.  

The centroid of a dis t r ibut ion has properties which 

make mechanizat ion of its computat ion very  simple. 
Let  us assume tha t  we have computed the total  
probabi l i ty  P~ for a number  of equal ly  spaced values 
of the phase angle ~v~ around the circle. Then from 
the definit ion of the Celltroid: 

2~ Pt (Fsi) = 0 
i 

the summat ion  being vectorial. The vector s~ as shown 
in Fig. 2 is the vector from the centroid of the prob- 
abi l i ty  dis t r ibut ion to the i th  point  on the phase 
circle, the circle being scaled down by  1/F to uni t  
radius as ment ioned earlier. Since s ~ = r ~ - m ,  the 
following holds : 

2 : P i F ( r i -  m) = 0 ,  
l 

m =_~P~r~/~,P~ = ~,P~ exp iqz~/~,P~. (7) 
i i i i 

That  is, the  centroid vector F m  is the weighted mean 
of all the possible scattering vectors F r i .  The polar 
coordinates (m, ~VB) of m are given by:  

m cos ~B = ~ P i  cos ~vi/~,P~ 
i i 

m sin ~OB = ~ P ~  sin ~vi/~YP~ (8) 
i i 

since r,  is a uni t  vector. 
The error in phase angle at a given ~v, is defined as 

A ~v, = ~ve- 9, (see Fig. 2). Then in equation (8) above, 
if we shift the origin line unti l  it  passes through the 
centroid, so tha t  ~VB = 0 and l ~vil = I A ~v~[ : 

m = Z Pi  cos/1 ~ / 2 ~  P~ = (cos/1 ~ i ) .  (9) 
i i 

Hence m is the weighted mean  of the cosine of the error 
in phase angle and is referred to as the 'figure of meri t ' .  

The mean  square error in electron dens i ty  of the 
'best '  Fourier  synthesis is s imply  related to the figures 
of meri t  : 

o o  Oo Oo 

(~q~-) = (2/v~) 2: 2: 2: F ~ ( ] - m ~ , ) .  (10)* 
0 --oo --co 
h k 1 

To prove this, note tha t  equation (13) of Blow & 
Crick, giving the mean  square error in electron densi ty 
over the  entire cell contributed by  one reflection and 
its Friedel conjugate can be writ ten in vector notat ion 
as  : 

0 h z) = Fi( - Er )2/2:Pi. 
i i 

~ -  is the vector structure factor used in the Fourier  
synthesis whose accuracy we are examining,  and F r i  
is a choice of the true vector structure factor with a 
probabi l i ty  P~ of being correct. We have not assumed, 
as Blow & Crick did, tha t  P i  is norm'alized. 

Differentiat ing (A@2h~) with respect to r and set- 
t ing the differential  to zero, we arrive at an equation 

_ 

* The s~aaabol (A~ 2) is used as a convent ion to denote  
((A~)2), the mean square value of A 0. 
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equivalent to equation (14) of Blow & Crick, giving 
the value of ~" which will minimize the mean square 
error • 
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:F ig.  3. P h a s e - c i r c l e  d i a g r a m s  f o r  t h r e e  r e f l e c t i o n s  f r o m  6 A 
myoglobin  da ta ,  and  probabi l i ty  funct ion  plots f rom equa- 
t ion (6), text .  H e a v y - a t o m  vectors shown in phase circle 
d iagrams by  small arrows;  pa ren t  compound  circle da rke r  
t h a n  others.  Le t t e r  b indicates 'best '  phase,  or t h a t  of 
centroid of probabi l i ty  d is t r ibut ion;  m indicates mos t  
probable phase if di f ferent  from b; s indicates second most  
probable phase. Figures of mer i t  or radial  components  of 
centroid are 0-96, 0.59 and  0.048, respectively.  

(a) Typical  un imodal  funct ion.  
(b) Typical  b imodal  dis tr ibut ion.  
(c) Poores t  de te rmina t ion  of entire 2 /~ work.  

Note  t h a t  a l though  Fig. 3(b) is bimodal ,  the  greater  sharpness  
of intersect ion as compared  wi th  3(a) is reflected in a tenfold  
greater  probabi l i ty  dens i ty  P(¢) (before normalizat ion) .  

= F . Z P i r i / ~ , P ~  = F m  (12) 
i i 

by equation (7) above. Hence for the 'best' Fourier- 

</1 e~hkZ ) = 2F 2 ~ P ~ ( m -  r~)2/V ~.X P~ 
i i 

= 2 F 2 ~ P i ( m - r i ) .  ( m - r ~ ) / V 2 Z P i  
i i 

= 2 F  2 • P~ (m 2 -  2m cos/1 ~ + 1) / V 2 ~ P~ 
i i 

= ( 2 F 2 / V 2 ) { m 2 - 2 m ( Z P ,  c o s d ~ , / 2 P , ) +  1) 
i i 

<d~2h~z> = (2F2 /V2) ( l -m2) ,  (13) 

where as before,/1 ~ is the angle between m and ri. 
:Finally, the total mean square error from all reflec- 
tions is as given in equation (10). 

In the EDSAC II  phase programme, P~ is computed 
in five-degree intervals around the phase circle, and 
Pi, P~ cos qgi and P~ sin ~ are added into three storage 
locations, while a record is kept of the angle with 
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greatest probability, ~M. At the end of the sweep 
around the circle, m and ~B are calculated from 
equations (8). In addition to the h, k and l values 
necessary to identify the reflections, F,  q~M, mF,  q~B 
and m are punched out on paper tape for each reflec- 
tion in a form suitable for use as an input tape for 
a Fourier synthesis. Running sums of m and F2(1 - m  2) 
can be built up so that  at the end the mean figure of 
merit and mean square electron-density error can be 
computed. 

In Figs. 3(a)-(c) are shown the Harker phase-circle 
diagrams for three reflections selected from the earlier 
myoglobin data to 6/~ resolution. The figures of merit 
for the three reflections are 0.96, 0.59 and 0.048 
respectively. In a centroid Fourier synthesis the 
(4, 1, 3) reflection would therefore be entered with 
only 5% of its full contribution. This reflection, the 
worst in the entire 6 ~ (and 2 ~) work, was in fact 
omitted from the 6 /~ synthesis as untrustworthy. 
The advantage of the centroid method is that  it 
automatically takes such considerations into account 
without the necessity of a long manual search through 
thousands of phase determinations for bad reflections. 
I t  is thus particularly suitable for use with a digital 
computer or with large quantities of data. 

4. R e f i n e m e n t  of re la t ive  y c o o r d i n a t e s  

So far it has been assumed that  all parameters of the 
heavy atoms are known. I t  may be worthwhile to 
describe a method designed for space group P21 but 
capable of extension to other symmetries, by which 
certain coordinates may be easily be refined in the 
course of phase determination. In space group P2~ 
the position of the origin is fixed in the x and z direc- 
tions by space-group symmetry while in the y direc- 
tion it is not. What are important are not the absolute 
y coordinates of the heavy atoms but relative y coor- 
dinates between different heavy atoms. In this work 
all coordinates were known roughly, having been 
obtained by methods explained in an earlier paper by 
Bodo et al. (1959). All parameters of the heavy atoms 
except the relative y coordinates were refined by least- 
squares methods using the centric hO1 projection data 
(see appendix). This section outlines the refinement of 
heavy-atom relative y coordinates by a least-squares 
procedure which seeks the best set of phase circles. 

As was mentioned in section 2, the most probable 
phase angle ~M is that  for which the following quantity 
is minimized: 

Ze~2 (~)/2E~ 2 = . ~ w j ( F j - D ~ )  2 (14) 

with the weighting factor wj = 1/2Ej 2. The sum j is 
taken over all heavy-atom compounds for one reflec- 
tion. A similar sum taken over all reflections, ~7, for 
one heavy-atom derivative provides a quantity whose 
minimization with respect to the parameters of the 

heavy atom leads to the best values of these param- 
eters: 

. ~ W , ( F ~ , , -  Di,,7) 2 , (15) 

where W, is an as yet unspecified weighting factor. 
I t  is possible in principle to set up the full set of normal 
equations and refine all the heavy-atom parameters 
at once (Dickerson, Kendrew & Strandberg, 1960), 
and such a procedure may be justified in the absence 
of faster refinement methods, or with faster com- 
puters. This was felt to be unnecessary with myoglobin 
since all but the y coordinates had been refined by 
two other methods, the centrosymmetric projection 
method and the Rossmann approximate least-squares 
method (see appendix). With only one variable yj 
per heavy atom, the normal equation for minimizing 
expression (15) is: 

{.~ W,,(dD/dyj) "~} JYs =-,~ W,~(dD/dy~) (F/,,~-D],~) . (16) 

With an approximate set of phases calculated from 
the initial y coordinates, a set of shifts can be com- 
puted which would best improve agreement of the 
individual derivatives. From these a new set of phases 
can be calculated and refinement of phases and y 
coordinates can be carried out alternately until the 
desired degree of convergence is reached. 

For space group P21 and for several other mono- 
clinic space groups, the calculation of dD/dy  is partic- 
ularly simple if the heavy-atom group can be approx- 
imated by a single isotropic atom. In this case the 
magnitude of fi depends solely upon x~ and z~ while 
the phase, c~, depends solely upon yj (if fi is allowed 
to be a positive or negative scalar). For space group 
P21 under these conditions: 

f~ = 2fojt~ cos 2~ (hx~ + lzj - ¼n) exp 2~i(ky j  + ¼n) 
--fj exp 2rei(kyj-4- ¼n), (17) 

where n--0 for k even and n--1 for k odd. fo~ and t~ 
are the atomic scattering and temperature factors. 
Then with D/,, defined as in equation (4): 

(dD/,,Jdy/) = ( -  Ffi/D],,7) .27~k sin ( ~ -  ~]). (18) 

The calculation of dD/dy~ and the terms of equation 
(16) can be carried out as the phase angles are com- 
puted with virtually no loss of time, and the shifts 
in yj are punched out at the end of the phase deter- 
ruination. Convergence can be followed by noting the 
size of shifts in successive cycles, the mean change in 
phase angles from one cycle to the next, and the 
gradual increase in mean figure of merit, in about this 
order of decreasing sensitivity. 

Several weighting factors W,7 were tried, but the 
one which gave the best convergence behavior was 
W, = m 2, which is attractive on intuitive grounds since 
the function being minimized has the dimensions of 
the square of the structure amplitude. 
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5. Application to the myoglobin synthesis 
to 2 A resolution 

With  four heavy-a tom compounds the  t ime required 
for one phase determinat ion on EDSAC I I  was 3½ sec., 
of which about  1 sec. was occupied in punching results. 
The full set of 9600 reflections required 10 hr. For  this 
reason, relat ive y ref inement  was carried out on 
pseudo-random tenths  of the  data ,  on all reflections 
with the same specified low-order digit in the ob- 
served F ' s ,  followed by  three final cycles of over 
one thi rd  of the da t a  each. The limit of the ref inement 
method  seemed to be around 0.005 in relative y, or 
0.15 _~, as evidenced by  the tendency of different one- 
ten th  samples to converge to slightly different values. 
The mean  figure of meri t  remained around 0.61 
throughout ,  and  was not  a sensitive indicator of the  
progress of refinement.  A bet ter  indicator was the 
mean  change in phase angles between successive cycles. 
For  one case in which the indicated shifts in relative 
y 's  were 0.007 or 0.21 A, the  mean  change in phase 
angles as a result  of application of the shifts was 
about  6 ° . Near  the end of the  re f inement 'when  indi- 
cated shifts were 0.0015, or 0.045 A, the phase angles 
showed a mean  change of about  2½ °. 

The mean  figure of mer i t  was found to decrease 
with increasing 0, and  a plot of In ( m )  against  
(2 sin 0) 2 was very  close to linear with a slope of - 1.52. 
This fall-off is to be expected, since the  outermost  
reflections, being both small and  of short  wavelength 
in the Fourier  summat ion,  will be most  sensitive both 
to exper imental  errors and  to imperfect  isomorphism. 
Since it is these outer  reflections which are the most  
informat ive  about  details of s tructure,  it  was decided 
to calculate one Fourier  synthesis with an artificial 
modifying factor  of exp 1.52(2 sin 0) ~, which would 
make  the  radial  fall-off of s t ructure  factors the  same 
as t h a t  of the unweighted data .  For  two Fourier  syn- 
theses, addit ional  sharpening factors of exp 2.2(2 sin 0) 2 
were imposed, removing all radial  fall-off and giving 
essentially point -a tom structures.  

Five Fourier  syntheses were calculated for restr icted 
regions of the unit  cell in order to decide which func- 
t ion should be used for the full electron-density map.  
These syntheses were calculated using coefficients with 
magni tudes  and phases as follows: 

(1) F ;  (pM. 
(2) F exp 2.2(2 sin q~)2; 00M. 
(3) m F ;  CpB. 
(4) m F  exp 1.52(2 sin ~)~; ~S. 
(5) m F  exp 3.72(2 sin ~)e; ~B. 

~ M = t h e  most  probable  phase,  and  ~ s = t h e  'best '  
phase (see Blow & Crick). 

Sections containing the haem group are shown for 
syntheses (1), (4) and  (5) in Figs. 4(a)-(c). The un- 
sharpened 'best '  Fourier  (3) showed a blurring of 
detail  ascribable to the damping effect of the figure 
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Fig. 4. Observed and theoretical electron-density distributions 
in plane of haem group: 

(a) Normal Fourier synthesis, coefficients (F,q)M), no 
sharpening. 

(b) 'Best' Fourier synthesis, coefficients (m_~, qgB), sharpen- 
ing function exp 1.52 (2 sin 0) 2. 

The above two diagrams have the skeleton of an ideal por- 
phyrin ring superimposed for comparison. 

(e) Oversharpened point-atom 'best' Fourier-synthesis co- 
efficients (mF, ~B), sharpening function exp 3-72(2 sin 0) e. 
The four innermost maxima or minima of diffraction 
ripples produced by an abrupt cut-off of data at 2 /~ 
have been superimposed. Dashed lines are maxima, 
dotted lines, minima. 

Higher contours of the central iron atom are omitted. 
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of merit. The partially sharpened 'best' synthesis (4) 
and the unsharpened normal synthesis (1) were very 
much alike, with the former being marginally better 
over some parts of the unit cell. This is illustrated 
in Figs. 4(a) and (b); there is slightly less distor- 
tion of the electron density in Fig. 4(b), particularly 
in the upper left part of the diagram. Point-atom 
sharpening, as might be expected, produces objection- 
able diffraction ripples. In Fig. 4(c) the pattern of 
trough-crest-trough expected from a sharp cut-off at 
2 A is apparent, and this second trough produces very 
serious distortion in the lower left corner of the dia- 
gram. The 'best' synthesis sharpened to have the same 
radial structure factor fall-off as the observed data 
was judged to be the most satisfactory and was used 
for the full electron-density calculation.* 

6. Conclusions 

The Blow-Crick formulation of the solution of phases 
with the multiple isomorphous-replacement method 
has proved quite adaptable for use on a digital com- 
puter. Their method of selecting the proper phase 
angle, detecting poorly determined reflections, and 
weighting the Fourier synthesis accordingly, has 
produced results which are slightly better than an 
indiscriminate treatment of all phases alike, good or 
bad. Where the errors are greater, either experimental 
errors or those arising from imperfect isomorphism, 
the difference between equal-weight Fourier syntheses 
and centroid Fourier syntheses will probably be even 
more pronounced. The computer time required to 
calculate (pM and 09B is the same, and the 'best' 
Fourier technique has the very great advantage of 
eliminating the need for a reflection-by-reflection 
inspection of the phase output in order to detect poor 
phase determinations. 

A P P E N D I X  

Ref inement  of heavy a tom parameters  
other than relative y's 

:BY 1~. G. HART 

Department of Zoology, Washington University, 
St. Louis, Missouri, U . S . A .  

Refinement of x and z coordinates, scale and tem- 
perature factors and effective atomic numbers of each 
heavy-atom derivative were carried out using centric 
hO1 data, and as an independent check on the refine- 
ment, all parameters were refined by an approximate 
method developed by Rossmann (1960). Without 
preliminary phase information an exact least-squares 
refinement is impossible, but in the hO1 zone, where 

* A quan t i t a t ive  comparison of bo th  the normal  haem map  
and  the  par t ia l ly  sharpened 'best '  map  (syntheses 1 and  4) 
wi th  an  ideal haem group, carried out  by  Dr D. C. Phillips, 
has shown t h a t  the  'best '  haem gives sl ightly be t te r  agreement .  
Details will be reported elsewhere. 

there are only four possible combinations of signs of 
F and Fj, trial-and-error least-squares refinement is 
quite practicable. 

In the EDSAC II programme developed for this 
purpose the function to be minimized is: 

E = .X ( A F t -  AFo)~ 
u 

= _,~ {Zjfij t j  cos 2~(hxj+lzj)+_-IFl+_ kIF~l} 2 • (19) 
71 

In this expression the index U refers to one hO1 reflec- A 
tion, Z~ is an effective atomic number, fo~ is the 
unitary structure factor of heavy atom j, the tem- 
perature factor tj is given by t j = e x p - B ~  sin 2 0/2 2, 
x~ and z~ are heavy-atom coordinates and k is the 
scale factor between parent and derivative data. I t  
was found possible to approximate the unitary scat- 
tering factor at this resolution by an exponential 
function, and to collect this and the temperature 
factor into one term: 

A 
fo~t~ = exp - B'j(2 sin 0) 2. (20) 

Starting from specified trial values of the parameters 
x, z, Z, B' and k, the parameters were varied one at 
a time by - 2 ,  - 1 ,  + l, and +2  units, the size of the 
unit shift being specified in advance for each param- 
eter. Error sums, E, were built up for these twenty 
different combinations of parameter values plus the 
unshifted set. Two sign ambiguities exist in each term 
of the error sum of equation (19), but in each term 
that combination of signs was considered correct 
which gave the smallest value of the term. Each 
refinement of a heavy-atom derivative against the 
parent compound therefore gave a set of signs for the 
parent compound, whose values could be cross checked 
with those of other heavy-atom refinements. The 
agreement was found to be very good, which served 
to verify the validity of the refinement process. 

The fact that  only one parameter was varied at a 
time was compensated for by use of partial shifts 
and a method of steepest descents with five variables 
to a minimum E value. Let Eo be the error sum from 
the original unshifted parameter values, Em be the 
minimum error sum produced by shifts in value of 
a parameter ~, and ~m be the value of the parameter 
which produces this minimum error sum. Finally, let 
EM be the minimum error sum produced by any of 
the given parameters. The unweighted shift indicated 
for this parameter would be zl ~= ~m-~0. The shift 
applied in this programme, however, was: 

/1 ~'= (~m-  ~o). (Em - E o ) / ( E M - E o )  . (21) 

Hence a full shift was applied only to that  parameter 
which was most influential in decreasing the error sum. 
Whenever all five parameters refined to within the 
specified shift units, these units were quartered and 
refinement continued without interruption. With five 
parameters and 700 centric reflections, each cycle 
required about three to four minutes computing time, 
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and refinement was usually complete after ten to 
fifteen cycles. 

The refined values of the parameters compared well 
with the Rossmann programme values, except for 
the effective atomic numbers, which were uniformly 
smaller than indicated by the Rossmann programme. 
The Hart  hO1 values were used in the 2 /~. Fourier 
synthesis, although there may be some question 
remaining about the proper Z values to use, as 
evidenced by negative regions in the myoglobin 
Fourier synthesis at the three heavy-atom sites and 
some blurring of detail in the immediate neighbour- 
hood. This problem is currently being investigated. 

Thanks are due to Dr R. G. Hart,  whose heavy-atom 
refinement programme proved invaluable, and to Dr 
IV[. G. Rossmann, whose least-squares refinement pro- 
vided an independent check on the parameters. We 
should also like to express our appreciation to Miss 
Mary Pinkerton, whose assistance was invaluable at 
all stages of the work. 
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The Sint~le Isomorphous Replacement Method 

BY D. M. :BLow AND MICHAEL G. ROSSM-~_NN 

Medical Research Council Unit for Molecular Biology, Cavendish Laboratory, Cambridge, England 

(Received 8 September 1960 and in revised form 31 October 1960) 

Despite the phase ambiguity which arises when one isomorphous pair is used to determine phases 
in a non-centrosymmetric structure, a single pair of compounds can be used to give an interpretable 
Fourier synthesis. Two conditions must be satisfied: the replacing atoms must themselves form 
a non-centrosymmetric array, and a sufficient number of terms must be available. 

The method has been applied to the crystalline proteins haemoglobin and myoglobin. Examples 
are given which show the improvements which can be made by the use of weighting functions and 
by the introduction of anomalous-dispersion data. 

1. Introduct ion  

The isomorphous-replacement method, when applied 
in its conventional form to a non-centrosymmetrie 
structure, leads to an ambiguous result for the phase 
angle (Bokhoven et al., 1951). A general method of 
removing the ambiguity is to employ a series of com- 
pounds with isomorphous replacements at different 
sites, and this method has been used successfully with 
the proteins myoglobin and haemoglobin (Kendrew 
et al., 1960; Perutz et al., 1960). However, the prepara- 
tion of suitable isomorphous protein derivatives has 
been a matter  of great difficulty, and is likely to 
remain the most time-consuming step in a protein 
structure determination. I t  is therefore important  to 
find methods which use the minimum number of iso- 
morpheus derivatives. 

Rogers (1951) suggested a procedure applicable 

when only one isomorphous pair is available. Although 
in the form proposed it only applies to different atoms 
substituting at the same site, it  may  readily be 
generalized. A synthesis is calculated in which each 
term is given the phase of the scattering of the re- 
placing electrons, with a sign chosen according as the 
intensity is increased or decreased by the replacement. 
When the replacing electrons form a non-centre- 
symmetric arrangement, this synthesis tends to be 
similar to the electron-density function, but with 
background superimposed. Rogers' function has the 
unfortunate property of giving strong weight to terms 
where the isomorphous replacement has little effect 
on the intensity. 

Kar tha  & Ramachandran (1955) showed how the 
minimum function (Buerger, 1951) applied to the 
difference Patterson could in principle reveal a non- 
centrosymmetric structure under the same circum- 


